
Project 1

Knight’s Tour

Introduction

In the game of chess, which is played on an 8 × 8 board, a knight may move two squares in
any of the four basic directions and then one square perpendicular to that direction. Thus,
there are 8 possible knight’s moves, assuming none of them move the knight off the board.
The Knight’s Tour Problem asks the question, can a knight move from square to square,
landing on every square exactly once?

For example, if the board is 5× 5, then the following diagram shows one solution, beginning
in square (0, 0) and ending in square (4, 0).

1



1

11

2

10

19

189

25

13

8

12

14

7

16

15

6

24

23

225

20

21

17

3

4

In this project, we will write a program that will solve the Knight’s Tour Problem for a board
of any size, either by finding a tour or by determining that there is no tour. For example,
there is no knight’s tour on a 4 × 4 board.

Data Structures

The Point Class

We will use the Point class from the first semester. I will provide you with my version of
the Point class. (You may have called it the Point2D class.) A Point object consists of a
pair of integers representing the x and y coordinates of a point in the plane.

The Possible Moves

Use a typedef statement to define a Move object to be the same as a Point object. When
the pair of numbers (x and y) represent a move from the current position, it seems more
natural to call it a move than to call it a point.

Create a list of possible moves. This should be an array containing 8 Moves. These
moves should be (2, 1), (1, 2), (−1, 2), etc., representing each possible offset from the current
position. See the first diagram above. (You may list the 8 possible moves in any order you
like.) The Point class allows addition and subtraction of points, so you can make a move
by adding an offset to the current position.

The TourBoard Class

The TourBoard class will have data members, m rows and m cols, that will record the size
of the board. The data member m board will be a two-dimensional array of integers. Declare
the array to be 15× 15. Then make sure that m rows and m cols are never greater than 15.
The integer stored in the array is the order in which that square was visited. See the second
diagram above. The value 0 means that the square has not yet been visited.

The goal is to solve the Knight’s Tour Problem for an traditional 8×8 board, but to speed
up the testing of your program, you may want to begin with a 5 × 5 board. A 5 × 5 board
can be solved roughly 1000 times faster than the 8 × 8 board, depending on the starting
point and the order in which the possible moves are tried.

2



The Algorithm

The program should begin by prompting the user for the number of rows and the number of
columns in the board. These values are used to create the board. Then the user is prompted
for the starting position. This will be entered as a Point object.

Our algorithm will be recursive. I suggest that you write a function solveProblem()

that will receive the TourBoard object and the current position.
The solveProblem() function should first check to see whether the problem has been

solved by checking whether the number of squares visited so far equals the number of squares
on the board. If it does, then return true.

Otherwise, begin trying the possible moves. Use a for loop to work sequentially through
the list of possible moves. For each move in the list, first check whether it is legal. If it is,
then make that move and call solveProblem() (recursively) with the updated values of the
board and the current position.

If solveProblem() returns true, then return true. If solveProblem() returns false,
then undo that move and try the next possible move. If all possible moves have been tried,
but without success, then return false.

When execution returns to the main() function, solveProblem() will return either true
or false. If it returns true, then display the board, writing in each cell the order in which
that square was visited. If it returns false, then print a message indicating that a knight’s
tour is not possible for that board.

This assignment will be turned in in two parts:

• By 5:00 pm Friday, January 19, place the files tourboard.h and tourboard.cpp in a
folder named TourBoard Class and drop it in the dropbox.

• By 5:00 pm Friday, January 26, place the files tourboard.h, tourboard.cpp, and
KnightsTour.cpp in a folder named Project 1 and drop it in the dropbox.

3


